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Metastatic disease accounts for the vast majority of 
cancer- associated deaths. Despite advances in the diag-
nosis and treatment of cancer, the prognosis for patients 
with metastatic cancer remains poor, with median sur-
vival time measured in months in certain cancers1. The 
dissemination of cancer cells from primary tumour 
to distant organs involves an orchestrated, multistep 
process known as the invasion–metastasis cascade2–4. 
First, cells of the primary tumour must locally invade 
surrounding normal tissue. Then, these cells intrava-
sate into the systemic circulation and subsequently 
extravasate at a distant site, where the metastatic cells 
are required to proliferate and colonize an often- foreign 
tissue environment.

Long noncoding RNAs (lncRNAs) are operationally 
defined as RNA transcripts longer than 200 nucleo-
tides, and there is no evidence that they encode 
peptides5,6 (Fig. 1). While initially described only as 
intergenic transcripts7, lncRNAs now encompass nat-
ural antisense transcripts, overlapping transcripts and 
intronic transcripts, among others, depending on the 
genomic arrangement of the lncRNA with respect to 

nearby protein- coding genes8. Tens of thousands of 
lncRNAs have been identified by high- throughput RNA 
sequencing9–12, but only a small percentage of these have 
been functionally characterized. Through differential 
expression analysis and comparative transcriptomic 
studies of cancer specimens, various lncRNAs have been 
prioritized for functional studies, revealing a diversity of 
phenotypes and mechanisms (Fig. 1).

LncRNAs serve important roles in gene regu-
lation, including modulating gene activation and 
silencing13,14, X chromosome inactivation15,16, alterna-
tive splicing17 and post- translational regulation18–20. 
LncRNAs perform these functions through a variety 
of different mechanisms, including acting as molecu-
lar scaffolds that ‘guide’ chromatin- modifying enzymes 
as in the case of HOTAIR21–23 or DLX6AS24,25, acting as  
competing endogenous RNAs (ceRNAs) that ‘sponge’ 
microRNAs or proteins26, facilitating or inhibit-
ing long- range chromatin interactions (for example, 
LUNAR1 or CCAT1)27–29, or even functioning through 
the act of transcription itself14,30–33 (Fig. 1). Additional 
mechanisms are also emerging, such as orchestration of 
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nuclear architecture, formation of circular lncRNAs and 
destabilization of interacting mRNAs. These and other 
mechanisms of lncRNA function have been reviewed 
elsewhere5,6,13,34, and additional mechanisms are expected 
to be unearthed. Of note, particular mechanisms such 
as the ceRNA model have attracted scepticism (Box 1), 
primarily owing to stoichiometric imbalances between 
target mRNAs and their putative binding sites on  
ceRNAs, and some lncRNAs have multiple mechanisms 
described35–37, contributing to the complexity of this 
rapidly evolving field.

LncRNAs have emerged as key regulators of cancer 
pathways and also as biomarkers of disease38,39. Initially 
a peculiarity of molecular biology, lncRNAs have now 
been described in the context of most if not all of the 
classic hallmarks of cancer — sustained proliferation, 
replicative immortality, evasion of growth suppressors, 
induction of angiogenesis, resistance to cell death and 
metastasis40 (Fig. 1).

Importantly, much like protein- coding genes, in 
which genetic alterations are foundational aspects of 
oncogenesis, lncRNAs are amplified, deleted or mutated 
in malignancies38,40. A broad set of lncRNAs is located in 
recurrent copy number- altered regions in the genomes 
of tumours, including FAL1, whose genomic amplifi-
cation represses the growth suppressor gene CDKN1A. 
PVT1 is frequently amplified in many cancers as well36,41, 
with recurrent mutations found in its promoter region in 
breast and other tumours36. Although these lncRNAs are 
appealing to study owing to a potential genetic mecha-
nism of activation or deletion, it is important to evaluate 
whether the lncRNA gene resides within the minimal 
common deleted or amplified region, suggesting that 
its genetic aberration is the result of selective pressure. 
Epigenetic alteration of lncRNAs also occurs in cancer, 
as is the case with CCAT1 activation in the CpG island 
methylator phenotype28,42. Thus, genetic and epigenetic 
alterations in lncRNAs might account for the apparent 
rarity of driver mutations in early cancer genome studies 
that focused on protein- coding genes43.

In contrast to protein- coding genes in which their 
putative domains provide insight into their function 
(and can be disrupted), the regulatory mechanisms of 

lncRNAs are diverse and still emerging. Of note, PVT1 
has been shown to have important functions as both 
a DNA regulatory element (that is, cis mechanism of 
action) and a RNA transcript (that is, trans mechanism 
of action)36,41. This concept is not unique to PVT1, and 
underscores the need for appropriate models to dissect 
how the DNA or RNA may be affected and its ultimate 
contribution to tumorigenesis and metastasis44–48. As 
the lncRNA tumour biology field has evolved, inde-
pendent groups investigating the few lncRNAs that 
have been studied have often used different methods 
(Supplementary table 1) leading to potentially contra-
dictory findings. Although these contradictory findings 
may cast some doubt on their importance, it also high-
lights the complexity of lncRNAs and ultimately led to 
the development of improved strategies for deciphering 
their functions and potentially resolving existing dis-
crepancies. An experimental framework for studying 
cis- and trans- acting lncRNAs has been detailed in a 
previous review5,6.

Our understanding of how certain lncRNAs regulate 
the invasion–metastasis cascade and related processes 
such as organ- specific tropism and how they affect the 
tumour microenvironment (TME) is steadily increas-
ing (Figs 2,3). Although lncRNAs in cancer metastasis  
have been reviewed before49–51, several recent studies have 
been published, challenging previously held tenets about 
lncRNA function and mechanism35,36,52. Importantly,  
new tools such as modified antisense oligonucleotides 
(ASOs) and CRISPR–Cas9 and its derivatives have 
transformed the way lncRNAs are studied53–57, elucidat-
ing novel revelations about their function14,36,44, as well 
as lending insight into new therapeutic targets58. In this 
Review, we discuss recent work that has demonstrated 
in vivo evidence of lncRNA function in cancer metas-
tases, along with controversies pertaining to some of 
these lncRNAs.

Local invasion and EMT
Local invasion of surrounding tissue is a necessary 
initial step for tumour metastasis. The epithelial– 
mesenchymal transition (EMT) and its reverse counter-
part the mesenchymal–epithelial transition, which are 
processes normally activated in embryonic development 
and tissue homeostasis to ensure proper morphogenesis 
of tissues and organs, are crucial for the execution of the 
invasion–metastasis cascade59–61. Through activation of 
master regulators such as SNAI1, TWIST1 and ZEB1, 
carcinomas with epithelial phenotypes are conferred 
traits characteristic of mesenchymal cells that allow 
invasion, intravasation and dissemination to distant 
sites62. Although many lncRNAs have been described 
to modify growth and invasion, we focus our discus-
sion on lncRNAs with roles in invasion and EMT that 
are supported by in vivo experiments in the context of 
metastases (Fig. 2).

H19 in the EMT. H19, one of the earliest described 
lncRNAs63, is overexpressed in several cancers64 and 
involved in tumour cell invasion (Fig. 3). In bladder can-
cer cells, it was shown that H19 overexpression drives 
migration of malignant cells in vitro, by associating with 
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Long noncoding RNAs
(lncRNAs). Noncoding RNA 
transcripts longer than 
200 nucleotides, which are 
frequently polyadenylated, 
and that show no evidence  
that they encode proteins.

Competing endogenous 
RNAs
(ceRNAs). RNA transcripts 
(which may be lncRNAs, 
mRNAs or pseudogenes)  
that are capable of binding  
and influencing the activity  
of microRNAs through 
complementary base pairing.

Organ- specific tropism
The propensity for 
disseminated cancer cells to 
colonize and proliferate at 
specific organ sites due to 
diverse physiological and 
molecular factors.

Antisense oligonucleotides
(Asos). Exogenous 
oligonucleotides, often 
chemically modified to resist 
degradation, that alter the 
amount, stability or activity  
of complementary RNA 
transcripts, usually through 
RNase- based mechanisms.

Epithelial–mesenchymal 
transition
(EMT). A set of molecular 
processes that convert cancer 
cells of polarized epithelial 
phenotypes into more invasive 
mesenchymal phenotypes.
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the polycomb repressive complex 2 (PRC2) compo-
nent EZH2, leading to increased β- catenin activity and 
decreased E- cadherin, supporting a transition towards 
a mesenchymal state65. A challenge in the interpreta-
tion of these results is the tendency of PRC2 to undergo 
promiscuous RNA interactions66, which may obfuscate 
the primary molecular interactions responsible for H19 
function. Nonetheless, H19- mediated transformation 
towards a mesenchymal identity also occurs in colorec-
tal cancer (CRC) cells, where H19 was shown to func-
tion as a ceRNA that sequesters microRNAs miR-138 
and miR-200a, leading to the derepression of vimentin, 
ZEB1 and ZEB2 protein expression67. Consistently, H19 
expression was higher in mesenchymal subtypes of CRC 
cells than in epithelial subtypes. The role of H19 in pro-
moting invasion ultimately leading to metastases was 
further supported in spontaneous mammary tumour 
mouse models. Here, H19 was specifically over-
expressed in clones that are capable of seeding meta-
stases (that is, 4T1, 4T07 and 168FARN lines), and short 
hairpin RNA (shRNA)- mediated knock- down of H19 
in metastasis- capable clones abrogated metastasis from 
the primary site to distal organs (for example, lung, kid-
ney and liver)68. In this study, H19 acted as a ceRNA 
against miR-200b and miR-200c, leading to derepres-
sion of ZEB1 and GIT2 in primary tumour and distal 
metastases. GIT2 was shown to promote colonization in 
distal metastases. However, in circulating tumour cells 
(CTCs), H19 differentially sponged the miRNA let-7b, 
leading to derepression of CYTH3, which promoted a 
mesenchymal phenotype conducive to extravasation. 
This highlights a striking influence of environmental 
context on lncRNA function, a theme that has been 
observed as a general property of lncRNA biology54. 
One strength of this study was the use of endogenous 
Argonaut pulldown, adding biochemical support 
instead of relying on nucleic acid sequence analysis 
or indirect measurements of ceRNA activity, and tar-
geted mutagenesis to support the ceRNA role of H19, 
despite the controversy surrounding ceRNAs in general 
(Box 1). Therefore, H19 coordinates a stepwise cascade 
of metastasis initiation and colonization with potentially 
different mechanisms of action based on the cellular and 
environmental context.

These above- mentioned investigations of H19 func-
tion, however, do not separate the microRNA sponging 
capacity of the H19 transcript from its own ability to 
give rise to miR-675, which is encoded in the first exon 
of the H19 gene. In prostate cancer cells, high levels of 
H19 are unexpectedly associated with reduced meta-
static potential69, and H19- encoded miR‐675 expres-
sion led to downregulation of transforming growth 
factor β- induced protein (TGFBI), which is involved in 
progression of the EMT70. Therefore, transcripts derived 
from the H19 gene locus may have separable mecha-
nisms for the regulation of the invasion–metastasis cas-
cade. Although it is simpler to ascribe a single regulatory 
function to a lncRNA, it is plausible that a lncRNA (such 
as H19) that is altered in multiple cancer types may have 
a more crucial role and multiple regulatory mechanisms. 
As such, reconciling these differences requires the use 
of models that can either separate out each mechanism 
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(specifically manipulating the PRC2 interaction site or 
miRNA product) or minimally take into account how 
each model used could impact each regulatory mecha-
nism (Supplementary table 1). Collectively, this high-
lights both the importance of H19 and the complexity 
of studying this and other lncRNAs.

Other competitive endogenous lncRNAs in the EMT. 
Several additional lncRNAs have been implicated in 
the EMT. Among these, pro- transition associated RNA 
(PTAR) has been shown to be associated with the mes-
enchymal subtype of ovarian cancer and act as a ceRNA 
against miR-101, resulting in derepression of ZEB1 
expression71. Indeed, shRNA- mediated knock- down 
of PTAR increased E- cadherin expression and reduced 
FN1, ZEB1 and vimentin expression in ovarian cancer 
xenografts. Also, intraperitoneal injection of ovarian 
cancer cells with stable PTAR knock- down resulted 
in fewer tumour nodules in infected mice compared 

with controls, overall indicative of the role of PTAR in 
promoting EMT71.

Another intriguing lncRNA, lncRNA- PNUTS, is tran-
scribed from a locus that produces both a lncRNA vari-
ant (lncRNA- PNUTS) and a mRNA variant (PNUTS)72. 
While the lncRNA acts as a ceRNA, the mRNA produces 
a regulator of protein phosphatase 1. Treatment of cells 
with TGFβ led to PI3K–Akt- dependent phosphorylation 
and subsequent derepression of lncRNA- PNUTS tran-
scription. LncRNA- PNUTS expression correlated with 
ZEB1 and/or ZEB2 mesenchymal marker expression and 
was shown to be a ceRNA that binds to miR-205, leading 
to derepression of ZEB1/ZEB2 (Fig. 4). Overexpression of 
lncRNA- PNUTS induced EMT in both lung carcinoma 
and murine mammary gland cell lines, as evidenced by 
altered morphology and increased expression of ZEB1/
ZEB2 and vimentin, and this effect is abrogated by 
co- transfection with miR-205, supporting the ceRNA 
function of lncRNA- PNUTS72. ShRNA- mediated 
knock- down of lncRNA- PNUTS in MDA-231- LM2 
breast cancer cells resulted in decreased burden of 
lung metastases when injected into mammary fat pads  
of mice.

LncRNA- activated by TGFβ (lncRNA- ATB) is 
another ceRNA that acts as a regulator of the TGFβ–
ZEB1/ZEB2 axis. As a transcriptional target of TGFβ, 
lncRNA- ATB competitively binds to the miR-200 fam-
ily, leading to upregulation of ZEB1/ZEB2 (REFs73,74). 
Consistent with this mechanism, overexpression of 
miR-200a in hepatoma cells abolished EMT. As a result, 
lncRNA- ATB induced EMT, invasion, increased levels 
of CTCs and distant organ colonization in an in vivo 
orthotopic xenograft model of hepatocellular carci-
noma (HCC)75. Also in HCC cells, lncRNA ZFAS1 is 
amplified at the level of genomic DNA (Fig. 4), com-
petitively binds miR-150, derepressing ZEB1, MMP14 
and MMP16 gene expression to promote metastasis76. 
Another ceRNA, FTX, acts by competitively sponging 
miR-374a and inhibiting HCC cell EMT and invasion, 
in addition to binding DNA replication licensing fac-
tor MCM2, thereby impeding DNA replication and 
inhibiting proliferation in HCC cells77.

As discussed above, models of competitive binding 
between lncRNAs and miRNA are frequently described, 
and caution should be exercised when interpreting 
experiments claiming such mechanisms of action. This 
is because of the potential presence of unbalanced phys-
iological abundances of these transcripts and other con-
cerns (Box 1). Nonetheless, PTAR, lncRNA- PNUTS and 
lncRNA- ATB have each been shown to function in mul-
tiple cancer types, lending credence to their importance. 
However, it is possible that as these lncRNAs continue to 
be mechanistically interrogated additional mechanisms 
will be revealed that are consistent across cancer types.

EMT regulation by lncRNAs via alternative pathways. 
In contrast to lncRNAs interfering with TGFβ signal-
ling and transcriptional EMT pathways (Fig. 3), STAT3- 
activated lncRNA HOXD- AS1 promoted lymph node 
metastases in HCC by sequestering miR-130a-3p to 
derepress SOX4 mRNA expression78, ultimately result-
ing in enhanced migration and invasion via upregulation 

Box 1 | The controversy of the competing endogenous RNA hypothesis

The competing endogenous RNA (ceRNA) hypothesis proposes that some RNA molecules 
with shared microRNA (miRNA) binding sites compete for post- transcriptional control, 
leading to diminished target gene repression. Despite the growing number of studies 
focused on long noncoding RNAs (lncRNAs) acting as ceRNAs in metastasis, scepticism 
remains about whether physiological expression levels of a single lncRNA, which can 
represent a small fraction of the total miRNA targets, is sufficient to alter miRNA 
regulation156,157. others suggest that a ceRNA would need to introduce a similar 
quantity of miRNA binding sites to the existing pool of targets to alter their repression, 
or that a ceRNA would need to be at equimolar concentration to all miRNA targets158–160; 
however, this could be compensated through multiple tandem miRNA binding sites. 
This highlights the importance of establishing standardized strategies to demonstrate 
the physiological relevance of ceRNA candidates.

The miRNA prediction methods for establishing a ceRNA interaction can vary 
significantly between algorithms161. moreover, sequence content alone does not take 
into account the physiological expression levels of the ceRNA, miRNA and target genes. 
Gene expression data across patient cohorts can help to prioritize ceRNAs162 that have 
a positive expression correlation with target genes163, although it does not discriminate 
between correlated genes owing to alternative regulatory mechanisms. Another 
strategy is to prioritize ceRNAs displaying biochemical enrichment with RNA- induced 
silencing complex (RISC) components164. Numerous databases leverage various miRNA 
prediction algorithms, biochemical data and gene expression data to facilitate research 
on ceRNAs165–167. A caveat of existing databases is that they lack a global perspective on 
the miRNA target pool size and the fidelity of the miRNA interactions within the target 
pool that may affect the regulatory ability of the ceRNA. Nonetheless, they provide an 
opportunity for hypothesis generation.

The most common experimental validation strategies use models of ceRNA 
overexpression or silencing. Consequently, altered miRNA target gene regulation is 
assessed by manipulating levels of miRNA or RISC components followed by gene 
expression analysis. However, it is experimentally challenging to overexpress miRNAs 
or ceRNAs at physiological levels. Furthermore, direct evidence is necessary to show 
that the ceRNA–miRNA relationship is dependent on miRNA biogenesis168. In addition, 
it is crucial to demonstrate that the miRNA- binding sites within the target genes are 
dependent on the ceRNA. This can be achieved in an endogenous system via CRISPR 
genome editing of the miRNA binding site within the target gene and appropriate 
rescue experiments. Also, although cell lines offer practical advantages, they cannot 
mimic patient tissues. However, the use of mouse models169 (if an orthologue exists) or 
patient- derived xenografts and organoids could serve as more relevant physiological 
models. last, future studies will also have to consider the possibility that multiple genes 
are altered, which collectively increases the abundance of multiple miRNA- binding sites.

Collectively, the ease of identifying ceRNA interactions coupled with a common 
experimental validation framework may have led to a bias of metastasis- associated 
lncRNAs being mechanistically characterized as ceRNAs while under- representing 
alternative regulatory mechanisms.
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of MMP2, EZH2 and other SOX4 signalling targets79.  
Moreover, shRNA- mediated suppression of HOXD- AS1 
in multiple HCC cell lines reduced migration and inva-
sion in vitro (independently of proliferation and apo-
ptosis). In line with this, stable HOXD- AS1 knock- down in  
HCC cells led to reduced numbers of lung metastases  
in a tail vein injection mouse model.

TGFβ- responsive lncRNA MEG3 promotes EMT 
through interacting with EZH2 and indirectly upreg-
ulating ZEB1 (REFs80,81). LncRNA- MUF promotes EMT 
in CRC cells through activation of WNT–β- catenin 
signalling82, while it leads to activation of the TGFβ–
SMAD2/SMAD3 signalling pathway through inhibi-
tion of SMAD4 protein degradation75. Several additional 
lncRNAs have also been demonstrated to regulate the 
EMT via alternative pathways75,82–86 and are summarized 
in Fig. 3.

Promotion of invasion and migration. LncRNA 
NORAD, initially discovered for its role in maintaining 
genomic stability by sequestering cytoplasmic Pumilio 
proteins and thus maintaining expression of mitotic and 
DNA repair transcripts20,87, also functions in invasion 
and metastases in cancer (Fig. 4). NORAD deficiency is 

associated with lymph node metastasis in samples from 
patients with lung and breast cancer88. In breast and 
lung cancer cells in vitro, it has been shown that ectopic 
NORAD expression inhibited invasion and migration. 
In the same study, when intravenously injected into 
immunodeficient mice, breast cancer cells harbouring 
NORAD knock- down exhibited greater seeding of 
lung metastases. Mechanistically, NORAD acted as a 
mole cular decoy, binding to and inhibiting the action 
of S100P, thereby suppressing S100P- mediated pro- 
metastatic signalling, which includes invasion activated 
by cathepsin D and cofilin88.

In patients with colon cancer, CCAT2 has been 
shown to be overexpressed in microsatellite- stable CRC 
and metastatic CRC89. It has been shown that CCAT2 
can activate MYC transcription and WNT signalling 
through its interaction with TCF7L2 (observed using 
RNA immunoprecipitation in CRC cells). Consistent  
with these results, retroviral vector- mediated over-
expression of CCAT2 increased migration of HCT116 
cells in vitro and increased the frequency of liver metastasis 
when cells were injected into the spleen. Interestingly, 
other studies described CCAT2 facilitating metastases  
through metabolism, by promoting a pro- glycolysis 
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isoform of the enzyme glutaminase through regulation 
of alternative splicing90.

More recently, using transcriptome sequencing, the 
lncRNA RAMS11 was found to be overexpressed in liver 
metastasis compared with primary tumour from patients 

with metastatic CRC91. Genomic deletion of RAMS11 
using CRISPR–Cas9 decreased cellular invasion and 
migration of colon cancer cells in vitro. Further, RAMS11 
knockout in both tail vein and hemi- splenectomy 
orthotopic models reduced liver metastasis and lung 
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metastasis, respectively. These metastatic phenotypes 
were associated with RAMS11- dependent chromo-
box homologue 4 transcriptional activation of DNA 
topoisomerase II- α (TOP2A).

Unanswered questions about lncRNA regulation of 
invasion, migration and the EMT. An emerging theme 
is that lncRNAs interface with known master regula-
tors of the EMT, such as TGFβ, ZEB1, SNAI1 and the 
WNT–β- catenin pathway to enhance or repress meta-
static potential. These interactions may be direct through 
ribonucleoprotein complexes, or indirect through epi-
genetic regulators or miRNA sequestration (Figs 1,3). 
LncRNAs such as NORAD, CCAT2 and RAMS11 can  
induce invasion and migration phenotypes indepen-
dently of these pathways. Although these and several 
other lncRNAs have been reported to contribute to 
these processes, they do not function in isolation but 
instead via well- established protein- coding regulators, 
supporting the notion that lncRNAs tend to function 
as ‘fine tuners’ rather than master regulators of metas-
tases. Future work will be aimed at corroborating the 
mechanism of these lncRNAs in contributing to EMT, 
invasion and migration, and elucidating the mechanisms 
of action of lncRNAs that use various other pathways. 
Furthermore, whether these above- described lncRNAs 
function during other steps of the invasion–metastasis 
cascade remains to be explored.

Regulation of metastatic colonization
Malignant cells that escape the primary tumour through 
invasive and mesenchymal phenotypic transformations 

must intravasate into the bloodstream, overcome anoikis 
during haematogenous spread, extravasate at a distal site 
and colonize distant organ sites3. Although little is known 
about the role of lncRNAs in the first three of these 
cellular processes in vivo, several lncRNAs have been 
implicated in promoting the overall ability of metastatic  
cells to colonize and flourish at distant organ sites.

MALAT1 in metastatic colonization. MALAT1, one 
of the first lncRNAs to be described in the process of 
cancer metastasis, is associated with lung cancer meta s-
tases and is also prognostic for survival in patients with 
early- stage non- small cell lung cancer92. Promoter dele-
tion or ASO- mediated knock- down of MALAT1 in a 
mouse mammary tumour virus (MMTV)–polyomavirus 
middle T antigen (PyMT) model of human luminal B 
breast cancer results in decreased formation of lung 
metastases, greater tumour differentiation (as evidenced 
by cystic and encapsulated tumour appearance) and 
elevated E- cadherin (supporting an epithelial pheno-
type)93. MALAT1 can regulate these functions by local-
izing to nuclear speckles and altering co- transcriptional 
alternative splicing based on these initial descriptions.

Furthermore, when MALAT1 expression was inhibi-
ted in A549 lung carcinoma cells (via insertion of a 
premature polyadenylation signal into the MALAT1 
locus), this led to decreased expression of various 
metastasis- associated genes (for example, ROBO1, 
MIA2, GPC6, LPHN2 and ABCA1) and reduced 
migration in vitro compared with control cells94. Also, 
MALAT1 knock- down led to fewer lung metastases 
upon tail vein injections in mice, and cells were more 
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likely to remain within blood vessels compared with 
control cells, suggesting their inability to intravasate 
into tissue. Cells that did invade distal lung sites formed 
micrometastases, implying ineffective colonization fol-
lowing MALAT1 knockout. Suggesting therapeutic 
potential for MALAT1 targeting in metastatic lung 
cancer, subcutaneous administration of MALAT1 ASO 
decreased the burden of lung nodules in pulmonary 
mouse models of metastatic non- small cell lung cancer94. 
Therefore, perturbation of both the genetic locus and 
the RNA transcript resulted in concordant phenotypes 
in this individual study94, an agreement not universally 
observed in lncRNA studies, some reasons for which are 
dependent on the methodologies used to study lncRNAs 
(Supplementary table 1).

Although MALAT1 is generally implicated as a 
pro- tumour metastasis lncRNA, some evidence has 
suggested that MALAT1 can contribute to suppressing 
metastasis. Transcriptional inactivation of MALAT1 
in MMTV- PyMT mouse models using insertion of 
premature polyadenylation sequences promoted lung 
metastasis35, in stark contrast to earlier experiments 
that also used premature termination (in addition to 
ASO targeting) as methods of lncRNA inactivation94. 
Furthermore, previous experiments that used promoter 
deletion or transcript knock- down of MALAT1 impli-
cate the lncRNA in regulation of mRNA splicing and 
neighbouring gene expression93,95, adding to the range 
of differing mechanisms proposed for this gene. The 
pro- metastasis effects of MALAT1 depletion observed 
by Kim and colleagues35 were rescued by transgenic 
overexpression of MALAT1 (REF.35). In this study, it was 
identified that MALAT1 can bind to and inactivate 
transcriptional activity of the pro- metastatic TEAD 
transcription factor family, when analysed using modern 
techniques such a s c om pr eh en sive identification of RNA- 
binding proteins by mass spectrometry (ChIRP- MS). 
This can result in the abolition of ITGB4 and VEGFA 
expression, which may be required for migration and 
invasion35. These disparate results suggest that the 
phenotype of lncRNA function may depend not only 
on the cellular context54, as is the case when compar-
ing MALAT1 function in breast cancer35 versus lung 
cancer94, but also on the dominant mechanism of 
action (for example, regulation of gene expression and 
splicing93,95, or inactivation of transcription factors35). 
MALAT1 also illustrates a major challenge in lncRNA 
research. As it is not a priori established whether the 
genomic locus or the RNA gene product (or both) is 
responsible for lncRNA function, the lncRNA mecha-
nism must be interpreted within the context of the meth-
ods used to disrupt varying degrees of the genomic locus 
or RNA transcript (Supplementary table 1), as different 
methods may lead to conflicting conclusions if taken at 
face value.

Pro- colonization pathways connecting lncRNA and 
cytokines. Metastatic colonization also exploits non- 
canonical hedgehog signalling, whereby GLI tran-
scriptional networks are activated independently 
of the PTCH1- SMO transmembrane receptors96. 
In breast cancer, GLI2 activation of pro- metastatic 

transcriptional programmes is dependent on BCAR4 
(REF.97), a lncRNA initially discovered for its role in anti- 
oestrogen resistance98. In response to CCL21 chemokine 
signalling, BCAR4 interacts with SNIP1 and PPP1R10 
to epigenetically derepress GLI2 transcriptional targets. 
In vivo knock- down of Bcar4 using either shRNA or 
ASOs suppresses lung metastases derived from ortho-
topically implanted MDA- MB-231 breast cancer cells 
in mice97. Clinically, BCAR4 expression is correlated 
with metastatic burden of breast cancer and is prognos-
tic of patient survival, highlighting its biological role in 
metastatic dissemination and its potential as a disease 
marker.

LncRNA- ATB, which in addition to its role in pro-
moting the EMT through upregulation of ZEB1 and/or  
ZEB2 (REF.74), induces distant organ colonization of 
subcutaneously transplanted HCC cells in mice73. This 
pro- colonization function is attributed to lncRNA- ATB 
binding and stabilizing IL11 mRNA, leading to STAT3 
signalling, which inhibits apoptosis99. Therefore, this 
lncRNA may represent an important mediator of multi-
ple steps in the invasion–metastasis cascade, despite the 
challenges of resolving ceRNA function (Box 1).

HOTAIR promotes colonization. The HOX loci lncRNA 
HOTAIR is a relatively well-established regulator of 
metastasis38. Initially discovered as a trans repressor  
of certain HOXD  cluster genes in embryonic 
development22, HOTAIR is overexpressed in metastatic 
breast cancer and is also prognostic of patient survival21. 
In patients with CRC, high HOTAIR expression corre-
lates with the presence of liver metastases100. Ectopic 
expression of HOTAIR in non- metastatic SK- BR3 breast 
cancer cells and metastasis- competent MDA- MB-231 
cells results in lung colonization following tail vein injec-
tion into mice, with MDA- MB-231 cells exhibiting per-
sistent metastatic colonization and expansion21. By acting 
as a molecular scaffold for the PRC2 and histone H3K4 
demethylase LSD1 (REF.23), HOTAIR reprogrammes 
the epigenome of breast cancer cells to resemble those 
of embryonic fibroblasts21. Interestingly, the meta-
static potentiation of HOTAIR in breast cancer cells 
can be enhanced in a paracrine mechanism101. TGFβ1 
secreted by carcinoma- associated fibroblasts (CAFs) 
in vitro is capable of upregulating HOTAIR expression 
levels through transcriptional activation of HOTAIR by 
SMAD2, SMAD3 or SMAD4, thereby inducing EMT 
in breast cancer cells (MDA- MB-231 and MCF-7).  
Consistent with this observation and prior studies, 
HOTAIR knock- down decreases lung metastases101. 
Although HOTAIR was one of the first lncRNAs studied 
in metastasis, and therefore more groups have been able 
to continue dissecting its role, it has nonetheless been 
broadly found to promote metastasis across cancer types.

As tumour cells disseminate towards distant organs, 
the lncRNAs described in this can promote colony 
expansion in what are often foreign microenvironments. 
Further investigation is warranted to determine whether 
this effect is a generalized consequence of enhanced 
growth and proliferation, or whether these and other 
lncRNAs strengthen the relative fitness of metastatic 
cells within specific niches.

Micrometastases
Collections of metastasized 
tumour cells that are clinically 
detectable but typically under 
2 mm in diameter in human 
patients.

Comprehensive 
identification of 
RNA- binding proteins  
by mass spectrometry
(ChiRP- Ms). A method of 
identifying endogenous  
RNA–protein interactions with 
high specificity, using in vivo 
crosslinking, RNA pulldown 
and mass spectrometry.

NATuRe RevIeWS | CANCeR

R e v i e w s

  volume 21 | July 2021 | 453



0123456789();: 

Regulation of site- specific tropism
Metastatic cells exhibit site- specific tropism, as various 
organ environments require specific adaptations for the 
survival of disseminated tumour cells102–105. In other 
words, specific organ environments are more hospitable 
for the survival of disseminated tumour cells. This has 
been supported by expression of specific protein- coding 
genes that facilitate organ- specific metastatic tropism 
(such as connective tissue growth factor (CTGF) in bone 
metastases106), which allow disseminated tumour cells to 
overcome the demands of the tissue microenvironment 
at distant sites. An outstanding question in such organo-
tropic metastasis is how breast cancer, the most common 
malignancy in women, gives rise to metastases that are 
distributed to distant organs (for example, bones, lungs, 
central nervous system (CNS), lymph nodes and gastro-
intestinal tract) in non- random ways. For instance, up to 
70% of breast cancer metastases are disseminated to the 
bone, while 10–30% of metastases localize to the brain107. 
As such a pervasive disease, breast cancer has motivated 
the development of several well- characterized in vivo 
mouse genetic models108–110, enabling dissection of this 
crucial decision- making process. Certain lncRNAs 
have been identified to direct these organ preferences, 
the principles of which may be applicable to lncRNAs in 
other primary malignancies (Fig. 5).

Bone metastases. Within bone metastases derived from  
primary breast cancer, paracrine release of CTGF  
from malignant cells activates the YAP pathway in osteo-
clasts to induce differentiation and osteolysis, thereby 
promoting bone metastasis colonization106. Using a 

high- throughput RNA interference (RNAi) screen, it 
was shown that the lncRNA MAYA was required for 
YAP1 activation in MCF-7 breast cancer cells111 (Fig. 5). 
Knock- down of MAYA in cells derived from human 
breast cancer bone metastases (BoM-1833) led to abro-
gation of CTGF secretion, which impaired cancer cell- 
induced osteoclast differentiation and bone resorption. 
Mechanistically, it was shown that MAYA functions in 
a molecular complex with LLG2 and the methyltrans-
ferase NSUN6, which methylates the Hippo pathway 
component MST1. Methylation of MST1 then leads to 
activation of YAP1- regulated genes111. Tumours in mice 
derived from BoM-1833 cells with MAYA knock- down 
showed a reduced burden of bone metastases compared 
with controls. Furthermore, intravenous injection of 
locked nucleic acids (LNAs) against MAYA reduced the 
bone metastasis burden in mice that had previously been 
inoculated with breast cancer cells or A549 lung can-
cer cells, suggesting therapeutic targeting of MAYA as a 
precise way of treating bone metastases111.

Brain metastases. By contrast with bone metastases, 
breast cancer cells that metastasize to the CNS exploit 
different pathways to achieve site- specific colonization. 
Brain metastases derived from primary breast cancer 
express L1 cell adhesion molecule (L1CAM) to co- opt 
vascular endothelia, endowing metastatic outgrowth 
throughout the brain112. Lnc- BM is a lncRNA enriched 
in brain metastases compared with lung or bone metas-
tases derived from orthotopically introduced breast 
cancer cells113 (Fig. 5). Lnc- BM expression was inversely 
associated with survival in patients, and positively 
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correlated with CNS recurrence. Intracardiac injection 
of mice with breast cancer cells that were depleted of lnc- 
BM (via RNAi or CRISPR–Cas9) reduced the burden of 
brain metastases, along with reducing co- option of blood 
vessels within the brain by cancer cells. Mechanistically, 
lnc- BM activates expression of ICAM1 through phos-
phorylation of STAT1/3, thereby permitting malignant 
cell co- option of brain endothelial cells in an analogous 
manner to L1CAM112,113. Furthermore, once cells colo-
nized within the brain, lnc- BM mediated JAK2 activa-
tion to recruit macrophages via CCL2, thereby regulating 
multiple pathways conducive to brain metastases.

In a departure from its role in X chromosome 
inactivation16,114, lncRNA XIST was shown to be 
repressed in breast cancer brain metastases in mice, 
when compared with metastases in bone, liver or 
lung115. In line with this, silencing of XIST in MCF-7 
and SK- BR3 breast cancer cells that were intracardia-
cally injected into mice resulted in increased burden 
of brain metastases. Further, genomic knockout of Xist 
enhanced brain metastases in MMTV- PyMT mouse 
models of spontaneous breast cancer metastasis, through 
induction of EMT and activation of MET, promoting a 
stem cell phenotype115. XIST knock- down can also lead 
to release of exosomal miR-503, which induces polari-
zation of M2 microglia, thereby altering the metastasis 
microenvironment115.

As the expression and function of lncRNAs are gen-
erally cell type specific (with notable exceptions such 

as MALAT1 and XIST)9,54, it is perhaps unsurprising 
that lncRNAs play important roles in the organ- specific 
tropism of cancer metastases. However, it is unclear 
whether site- specific lncRNA regulatory programmes 
are triggered before metastatic colonization, thereby act-
ing as directors of cell fate. Alternatively, lncRNAs may 
exert their influence on the maintenance of metastatic 
clones through the microenvironment.

lncRNAs in the metastatic microenvironment
On arrival at distant organ sites, metastatic cells form and 
interact with the TME, which includes diverse processes 
such as angiogenesis116, suppression and/or co- option 
of the innate and adaptive immune system117–119, and 
the reprogramming of stromal populations to pro-
mote metastatic outgrowth120,121. The establishment 
and maintenance of a supportive microenvironment, 
including resident stromal cells and innate and adaptive 
immune cells, is required for the outgrowth of metastatic 
colonies2,122. Through suppression of the immune sys-
tem, recruitment of angiogenesis, paracrine signalling 
and deposition of pro- metastatic extracellular matrices, 
the TME contributes to cancer metastases in diverse 
ways. The roles of lncRNAs in the tumour and metastatic 
microenvironment are emerging (Fig. 6).

NF- κB- associated lncRNAs in the microenvironment. 
Initially discovered as a cytoplasmic lncRNA that 
directly inhibits the NF- κB complex within breast 
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cancer cells, leading to increased metastatic potential 
when downregulated123 (Fig. 6a), the NF- κB- interacting 
lncRNA (NKILA) also regulates intrinsic antitu-
mour activity in T lymphocytes in a STAT1–histone 
acetylation- dependent mechanism124 (Figs 4,6b). In 
breast tumour- infiltrating T cells, NKILA suppresses 
NF- κB signalling, leading to activation- induced cell 
death of those T cells (Fig. 6b). Knock- down of NKILA 
using shRNA in CD8+ T cells increased their penetra-
tion into lungs when adoptively transferred into breast 
cancer xenograft mouse models, and those T cells upreg-
ulated perforin and CD107a expression and exhibited 
increased antitumour activity124. CD8+ T cell exhaustion 
can also be induced through lnc- Tim3, which was shown 
to promote activation of p53 and RelA transcriptional 
targets125.

Whereas NKILA negatively regulates the NF- κB 
pathway in both tumour cells and immune cells, lncRNA 
CamK- A was shown to activate the NF- κB path-
way in breast cancer cells through degradation of 
IκB in response to hypoxia- induced calcium influx126 
(Fig. 6b). This led to activation of gene transcription 
of IL6, IL8 and VEGF (among other genes), which 
ultimately promoted macrophage recruitment and 
angiogenesis in patient- derived breast cancer flank 
xenograft models. Consistently, conditioned medium 
from CamK- A- deficient breast cancer cells failed to 
induce angiogenesis in HUVEC endothelial cell cul-
ture, whereas angiogenesis was induced in conditioned 
medium from CamK- A- proficient cells126.

Immune cell regulation by lncRNAs. Regulatory T cells, 
which contribute to avoidance of immune surveillance 
in tumours, are also influenced by lncRNA activity. In 
CD4+ T cells, lnc- EGFR was shown to bind to cytoplas-
mic EGFR, thereby stabilizing it for downstream signal 
transduction127. This led to induction of FOXP3, signi-
fying differentiation towards the regulatory T cell lin-
eage. Consistent with the expansion of this suppressive 
immune population, lnc- EGFR overexpression in T cells 
led to increased tumour growth compared with controls 
when these cells were implanted in xenograft models of 
HCC127.

In bladder cancer, LNMAT1 is overexpressed in 
lymph node- positive bladder cancer and is prognostic 
of overall survival in patients with bladder cancer128. 
ShRNA- mediated knock- down of LNMAT1 reduced 
lymph node metastases of bladder cancer cells injected 
into footpads of nude mice. However, the function 
of LNMAT1 was not intrinsic to the tumour cell, as 
conditioned medium from LNMAT1- transduced 
bladder cancer cells was capable of stimulating macro-
phage activation, and this effect could be abrogated by 
CCL2- neutralizing antibodies (Fig. 6c). Interestingly, 
LNMAT1 activated the expression of CCL2 by forming 
a DNA–RNA triplex with the CCL2 promoter and facil-
itated the deposition of the transcriptionally active his-
tone modification, H3K4 trimethylation. Furthermore, 
LNMAT1 overexpression increased lymphangiogenesis 
in vitro through macrophage- dependent upregulation 
of VEGF- C128. Therefore, lncRNAs can have potent 
non- cell- autonomous effects on the microenvironment.

LncRNAs are crucial regulators of differentiation and 
function in immune cells belonging to the progenitor, 
innate and adaptive lineages129. Furthermore, lncRNAs 
are necessary for the development and physiology of 
neural, pulmonary, cardiac and embryonic tissues130,131. 
As all these cell types can contribute to the metastatic 
microenvironment or premetastatic niche, it is conceiv-
able that additional lncRNAs will be implicated in these 
processes as well.

Translational potential of lncRNAs in metastases
Survival of patients with metastatic cancer is poor, and 
resistance to therapy remains a major barrier to effec-
tive treatment. One intriguing approach to improv-
ing the treatment of cancer is to leverage tissue- and 
cancer- specific expression profiles to develop prognos-
tic markers for progression from primary to metastatic 
disease.

LncRNAs as novel diagnostic and prognostic tools. While 
lncRNA PCA3 has been identified as a non- invasive 
upfront diagnostic marker of prostate cancer with relia-
ble test characteristics and is used in clinical practice132, 
overexpression of lncRNA SChLAP1 is independently 
prognostic of prostate cancer metastasis within  
10 years following prostatectomy based on a microarray 
analysis of 1,008 patients133. Application of SChLAP1 
measurement to risk stratification of patients at time 
of surgery may enable precision medicine strategies 
for proactive medical treatment of aggressive tumours. 
Indeed, SChLAP1 expression is a critical component of 
a genomic classifier used in clinical practice for pros-
tate cancer133. Mechanistically, SChLAP1 binds to and 
antagonizes the SWI/SNF complex, leading to decreased 
genome- wide occupancy of SNF5 and decreased expres-
sion of its target genes134. Consequently, SChLAP1 
knock- down in 22Rv1 prostate cancer cells reduced 
metastatic seeding when these cells were intracardiacally 
injected into SCID mouse models. However, this pro-
posed mechanism of SChLAP1 has been challenged, as 
subsequent investigation demonstrated that overexpres-
sion of SChLAP1 did not evict the SWI/SNF complex 
from chromatin, suggesting a SWI/SNF- independent 
mechanism of action for SChLAP1 in prostate can-
cer metastases52. It is possible that the mechanism of 
SChLAP1 exhibits context or cell- type specificity while 
still maintaining utility as a clinical prognosticator.

Clinical outcomes of patients with metastatic cancer 
vary dramatically, especially across patients with differ-
ent histologies of metastatic cancer135,136. In patients with 
metastatic renal cell carcinoma (RCC), high lncARSR 
expression was prognostic for shorter overall survival 
compared with tumours with low lncARSR levels137. 
lncARSR can confer resistance to sunitinib by seques-
tering miR-34 and miR-449, resulting in derepression of 
AXL and MET expression. By shuttling across cells via 
exosomes, lncARSR is capable of promoting drug resist-
ance in a paracrine fashion. In line with lncARSR con-
ferring sunitinib resistance, intravenous administration 
of LNA ASOs against lncARSR in an orthotopic xeno-
graft model of RCC conferred sensitivity to concurrent 
sunitinib therapy137.

www.nature.com/nrc

R e v i e w s

456 | July 2021 | volume 21 



0123456789();: 

RAMS11 expression was associated with poor 
prognosis in patients from two independent cohorts 
of patients with colon cancer91. Interestingly, a drug 
screen of FDA- approved agents revealed that increased 
RAMS11 expression promoted resistance to floxirudine 
(FUDR), a chemotherapy that is commonly used to treat 
metastatic CRC, and topoisomerase inhibitors. Indeed, 
RAMS11 CRISPR knockout cells showed increased 
sensitivity to FUDR and topoisomerase inhibitors91. 
Further work is necessary to translate the prognostic and 
predictive utility of RAMS11 to clinical trials.

As a caveat, the biomarker discoveries discussed thus 
far may still be at an early stage. Whereas SChLAP1 
ranked highest for elevated expression in patients  
with metastatic progression compared with patients with-
out metastatic progression133, many lncRNAs with cancer- 
or tissue- specific expression profiles may not be highly 
expressed enough to be used as a reliable biomarker.  
Moving forwards, the increasing availability of tran-
scriptome sequencing data will greatly facilitate lncRNA 
biomarker discovery. However, independent validation 
is crucial and could be more challenging for lncRNAs. 
Importantly, only a subset of microarray platforms 
contained probes monitoring RAMS11 and SChLAP1 
expression that enabled independent validation across 
cohorts of patients with long- term clinical outcome91,133. 
However, many lncRNAs will not be captured by any 
existing microarray platform. Although some studies 
may use gene- specific validation in small independ-
ent cohorts, more widespread adoption of a biomarker 
requires a systematic comparison of the diagnostic or 
prognostic significance of a lncRNA relative to existing 
protein- coding gene biomarkers, when available. Given 
the longer follow- up time associated with specific can-
cer types (for example, prostate cancer) coupled with the 
need for well- annotated clinical follow- up associated with 
metastatic end points, this may require leveraging older 
retrospective cohorts. Further, owing to complex mecha-
nisms of patient progression and response to treatments, 
a single lncRNA may not be the most clinically useful bio-
marker, but instead potential lncRNA biomarkers need to 
be evaluated in conjunction with protein- coding genes. 
Moving forwards, it will also be important to consider 
the ability to reliably detect putative lncRNA biomark-
ers non- invasively to minimize the need for biopsies. 
This will be particularly important for using lncRNA 
biomarkers for serial monitoring of patients for whom 
repeat tumour biopsy is impractical. Overall, SChLAP1, 
lncARSR and RAMS11 highlight the contributions of 
lncRNAs in cancer treatment response and their potential 
uses as prognostic and predictive biomarkers.

Therapeutic targeting of lncRNAs. Through in vivo 
preclinical models of metastatic disease, lncRNAs 
have shown promise as therapeutic targets for can-
cer treatment. For instance, the lncRNAs MAYA, 
MALAT1 and lncARSR, which we discuss above, have 
each been targeted for in vivo silencing using ASOs to 
ameliorate the burden of metastatic disease in mouse 
models93,94,111,137. However, it will be crucial to ensure 
minimal off- target effects when targeting lncRNAs 
using ASO therapeutics138,139, which could pose further 

issues given the generally lower abundance of lncRNA 
transcripts in vivo9. Emerging evidence demonstrates 
that ASOs disrupt target RNAs through premature 
transcriptional termination140,141, in addition to RNase 
H- mediated degradation of mature RNA, which should 
be considered when predicting the activity of ASO  
therapeutics. Hepatotoxicity has also been observed with 
certain ASOs142, and chemical modification of the ASO 
has been shown to mitigate this and off- target effects as 
well143,144. A larger practical issue will be the optimization 
of ASO delivery, which is a general area of development 
to increase the impact of ASOs targeting lncRNAs or 
protein- coding genes. Despite these challenges, it is 
reassuring that protein- coding genes have been targeted 
using ASOs in both mouse models of cancer145,146 and 
clinical trials, as in the case of SMN2 in patients with spi-
nal muscular atrophy147, STAT3 in treatment- refractory 
lymphoma148 and SMAD7 in Crohn’s disease149. Perhaps 
the once- lofty vision of targeting lncRNAs for cancer 
metastasis treatment appears hopeful.

Current limitations
Although many seminal studies demonstrate the contri-
butions of lncRNAs throughout metastasis (Fig. 2), gaps of  
knowledge remain. In particular, the steps in the invasion– 
metastasis cascade between cellular transformation and 
distant colonization, which would include extravasation, 
haematogenous (or leptomeningeal as may be the case 
in CNS malignancies) spread, intravasation and forma-
tion of micrometastases, have less well- established con-
tributions from lncRNAs. Overcoming these limitations 
would require additional patient- matched molecular 
profiling data from granular stages of metastasis (for 
example, primary tumour, CTCs, micrometastases and 
well- defined metastases).

In addition, the majority of the lncRNAs discussed 
in this Review act to enhance metastatic potential. 
Whether these observations present inherent attributes 
of lncRNA biology or are a consequence of methodolog-
ical bias in respective studies remains to be determined 
(Supplementary table 1). Nonetheless, additional studies 
of lncRNAs that potentially suppress metastasis are war-
ranted. Generalizing the roles of lncRNAs in metastasis 
across cancer types has also been elusive, and perhaps 
this should be expected based on the cell type- specific 
function of most lncRNAs. Improved methodology to 
dissect the mechanisms of lncRNAs in experimental 
models that faithfully recapitulate human disease are also 
required, as characterization of lncRNAs in cancer still 
lags behind that of their protein- coding counterparts.

Another conundrum in the field of lncRNA biology 
is why seemingly disparate lncRNAs tend to converge 
upon a few firmly established protein- coding path-
ways, instead of functioning as independent regulators 
of metastasis. It is possible that decades of research on 
protein- coding genes have enabled the discovery and 
convergence of key metastasis regulator genes whereas 
the comparative infancy of research into many lncRNAs 
has not yet enabled similar lncRNA discoveries and 
validation across independent laboratories. However, 
emerging data suggest that ‘functional conservation’ 
in lieu of primary sequence or secondary structure 
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conservation may be a salient feature of lncRNAs150,151. 
Furthermore, it is possible that multiple RNA spe-
cies fulfill similar roles interacting with established 
protein- coding genes, a concept highlighted by the 
requirement of PRC2 for RNA interaction to properly 
function152, despite exhibiting promiscuous protein–
RNA interactions66. Taken together, it is conceivable that 
even a menagerie of lncRNAs generated from various 
locations in the genome with divergent sequences can 
influence a similar set of potent metastatic pathways.

Conclusions
Metastases are an often- deadly consequence of can-
cer. LncRNAs are not only important regulators of  
cancer hallmarks in general38,39, but also key players in  
the pathogenesis of metastases49. As more lncRNAs are 
rapidly characterized, as has been the case in recent 
years, it is evident that lncRNAs function at critical junc-
tures in the invasion–metastasis cascade, organotropic 
colonization of distant organs and TME. By functioning 
together with pro- or anti- metastatic protein complexes, 
or by interacting directly with other RNA species or  
DNA (as in the case of RNA–DNA triple helices), lnc-
RNAs exert their influence on cancer pathways via diverse  
mechanisms5,6,13. Outstanding questions remain, such as 

the role of lncRNAs in CTCs, formation of the premeta-
static niche and stromal cell- specific functions120,153. 
Future studies necessitate investigation into these 
additional processes and also further delineation of 
the mechanisms of lncRNAs involved in metastasis. 
Moving forwards, in addition to selecting appropriate 
models for inactivating a lncRNA, it will be crucial for 
labs to perform appropriate genetic rescue experiments. 
Independent validation of results between different 
investigators will be necessary as well. While under-
taking these endeavours, it is also crucial to understand 
the impact of various methodologies on interpreting 
lncRNA function, and to be open minded to different 
possibilities for how lncRNAs function.

LncRNAs have also emerged as an underappreci-
ated cache of novel therapeutic targets. Their diverse 
roles in cancer progression provide new opportunities 
for undermining metastases in the clinical setting. The 
maturation of technologies that enable in vivo targeting 
of lncRNAs53,154, such as antisense oligonucleotides that 
are analogous to those currently used to treat human 
disease155, will greatly foster the realization of lncRNA 
therapeutics against metastases.
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